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Abstract. We study the quark mass expansion of the magnetic moments of the nucleon in a chiral effective
field theory including nucleons, pions and delta-resonances as explicit degrees of freedom. We point out that
the usual power counting applied so far to this problem misses important quark mass structures generated
via an intermediate isovector M1 nucleon-delta transition. We propose a modified power counting and
compare the resulting chiral extrapolation function to available (quenched) lattice data. The extrapolation
is found to work surprisingly well, given that the lattice data result from rather large quark masses. Our
calculation raises the hope that extrapolations of lattice data utilizing chiral effective field theory might
be applicable over a wider range in quark masses than previously thought, and we discuss some open
questions in this context. Furthermore, we observe that within the current lattice data uncertainties the
extrapolations presented here are consistent with the Padé fit ansatz introduced by the Adelaide group a
few years ago.

PACS. 11.10.-z Field theory – 12.38.Gc Lattice QCD calculations – 11.30.Rd Chiral symmetries

1 Introduction

The computation of nucleon properties in lattice QCD
is progressing with steadily increasing accuracy [1]. So
far, these results are, however, limited to relatively large
quark masses and the quenched approximation. The typ-
ical “light” quark masses manageable on the lattice up to
now, are more than 10–20 times larger than the average
u- and d-quark masses, mq ∼ 8 MeV, determined at a
renormalization scale around 1 GeV. This corresponds to
pion masses well above 0.5 GeV.

On the other hand, in the chiral limit mq → 0, QCD
at low energies is realized in the form of an effective field
theory with spontaneously broken chiral symmetry, with
massless pions as the primary active degrees of freedom.
Nucleons are added to this theory as fermionic matter
fields which can be treated non-relativistically due to their
large mass. The coupling of the chiral Goldstone bosons
(i.e., the pions) to these spin-1/2 matter fields (i.e., the
nucleons) produces the so-called “pion-cloud” of the nu-
cleon, an important component of nucleon structure at low
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energy and momentum scales (for a survey and references
see [2]).

The interpolation between lattice QCD results and the
chiral limit, passing through the physical pion mass point
at mπ ≈ 0.14 GeV, is presently a subject of intense studies
and lively debate. Leinweber et al. [3] have initiated such
considerations by requiring that any interpolation of this
kind should be subject to the leading dependence on the
pion mass, as dictated by chiral symmetry.

In the present work1 we focus on the chiral aspects of
nucleon magnetic moments. The authors of ref. [3] have
introduced a parameterized form of the pion mass depen-
dence of proton and neutron magnetic moments in order
to interpolate between available (quenched) lattice QCD
results and the “physical” values at the proper mπ. Our
approach uses instead systematic methods of chiral per-
turbation theory (ChPT) in the baryon sector [2]. It will
be demonstrated that such a scheme provides an interpo-
lating function of mπ, which successfully connects lattice
data with actual physical magnetic moments, in such a
way that the physics behind the chiral magnetic struc-
ture of the nucleon can be identified. Not surprisingly,
virtual excitations of the delta isobar turn out to play a
decisive role in this context. The strong N → ∆ mag-

1 Some aspects of this work have already been reported in
refs. [4,5].
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netic dipole transition induced by the photon field is a
prominent feature in determining the non-linear depen-
dence of the magnetic moments on the pion mass. Given
that delta excitations are separated from the nucleon mass
by a “small” scale of hardly more than twice mπ, it is ob-
viously not a good starting point to relegate the important
physics of the ∆(1232) to higher-order “counter terms”, if
one is interested in the mπ-dependence of nucleon struc-
ture properties above the physical pion mass. Such effec-
tive chiral field theories with explicit pion, nucleon and
delta degrees of freedom and a systematic power counting
already exist in the literature (e.g., see ref. [6] and refer-
ences therein). Here, however, we argue that even these
existing schemes, such as the so-called “Small Scale Ex-
pansion” of ref. [6], need to be modified if one wants to
capture the important ∆(1232)-induced mπ-dependence
already in a leading-one-loop calculation.

This paper is organized as follows. The chiral effec-
tive field theory framework, including the treatment of nu-
cleon and delta degrees of freedom, will be summarized in
sect. 2. The actual calculation of the anomalous magnetic
moments is described in sect. 3, with the results discussed
in sects. 4, 5 and 6. The following two sections examine
higher-order corrections to be compared with the Padé ap-
proximants suggested by the Adelaide group [3], and dis-
cuss some aspects of the quenched approximation as they
may be relevant in extrapolations toward the presently ex-
isting lattice data. Undeniably, uncertainties still remain
in such extrapolations to pion masses as large as five times
the physical one. The results are nevertheless promising,
and further progress in lattice QCD towards smaller quark
masses in partially quenched or even unquenched simula-
tions can be expected to reduce the errors substantially.

2 Effective field theory input

2.1 General remarks

The effective field theory that approximates QCD in
the low-energy limit is the Chiral Perturbation Theory
(ChPT) [7,8]. In the case of two light-quark flavors its
primary degrees of freedom are pions as Goldstone bosons
of spontaneously broken chiral symmetry. ChPT repre-
sents a systematic expansion in terms of low-momentum
and small-quark-mass scales, which allows for a system-
atic treatment of the additional explicit breaking of chiral
symmetry responsible for non-zero pion mass. Baryons are
introduced as fermionic matter fields, acting as sources
which create or annihilate pion fields in accordance with
chiral symmetry. In the non-relativistic version2 of baryon
ChPT considered in this work (“heavy-baryon ChPT”) [2],
the nucleon mass M is treated as a “large” scale that per-
sists in the chiral limit, allowing for a 1/M expansion in
the theory.

The ∆(1232)-isobar is the lowest spin-3/2 excitation
of the nucleon, reached via a strong magnetic dipole tran-
sition. It is therefore of key importance in considerations

2 Some results of relativistic baryon ChPT are discussed in
appendix B.

of the nucleon’s magnetic structure. Since its mass dif-
fers from that of the nucleon by less than 0.3 GeV, its
incorporation as an explicit degree of freedom in baryon
ChPT turns out to be mandatory in the present context.
The basic techniques to do so are well established, at
least in the context of non-relativistic baryon ChPT [9].
However, we emphasize that a chiral effective field the-
ory that couples both octet and decuplet baryons to the
Goldstone boson dynamics in addition must specify how
the small but always finite octet-decuplet mass splitting
—throughout this work denoted by the parameter ∆— is
merged with the traditional powers-of-q counting of ChPT
spelled out in ref. [8]. In that sense we state that a unique
extension of spin-1/2 baryon ChPT to a chiral effective
field theory with explicit spin-1/2 and spin-3/2 baryon
degrees of freedom does not exist. An additional piece of
information concerning the proper (ac)counting of ∆ has
to be provided, without guidance from chiral-symmetry
constraints3. Here, we specifically address this issue by
adopting the (phenomenologically motivated) philosophy,
spelled out in ref. [11], to count in the parameter ε ≡ (q,∆)
which, in addition to the (usual) powers of q, also keeps
track of the finite mass splitting ∆. All discussions in the
subsequent chapters referring to leading-order (LO), next-
to-leading-order (NLO) etc. Lagrangians are then under-
stood as “powers of ε”, i.e. O(ε), O(ε2), . . . [6].

The following subsections give a brief summary of our
basic input. We will work with 2-flavor ChPT coupled to
spin-1/2 and spin-3/2 matter fields throughout. We also
note that strictly speaking all parameters gi, mi, fi, . . . in
the Lagrangians to be introduced in sect. 2 should carry
an extra superscript index g0i , m

0
i . . . to distinguish them

from any physical quantities which might carry the same
label. In most cases we suppress this extra index to ob-
tain simpler formulae, but it is understood that there is
a difference, even if it sometimes is of higher order than
considered in this calculation.

2.2 Pion Lagrangian

For one-loop calculations of the nucleon magnetic mo-
ments, the SU(2) chiral Lagrangian for pion fields πa (a =
1, 2, 3) in the presence of an external electromagnetic field
Aµ is needed only to leading order. With e denoting the
unit charge, we utilize [8]

Lππ =
f2π
4

Tr
[∇µU

†∇µU + χ†U + χU†] , (2.1)

with the chiral tensors

U =

√
1 − �π 2

f2π
+

i

fπ
�τ · �π ,

∇µU = ∂µU − i FR
µ U + i U FL

µ ,

χ = 2B0M + . . . . (2.2)
3 For example, we note that a combined treatment of non-

relativistic baryon ChPT and large Nc-counting rules can pro-
vide a systematic power counting for systems with both spin-
1/2 and spin-3/2 degrees of freedom [10].
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Here fπ represents the pion-decay constant (in the chiral
limit) and τa are the usual SU(2) (Pauli) isospin matrices.
As we are only interested in interactions of u- and d-quarks
with an electromagnetic background field, the left- and
right-handed (axial) vector source terms can be identified
as

FL
µ = FR

µ =
e

2
Aµ τ

3 . (2.3)

Furthermore, M denotes the quark mass matrix for the
case of 2 light flavors u, d. The connection between the chi-
ral condensate parameter B0, the non-zero quark masses
and the resulting non-zero masses for the pion fields will
be discussed later.

2.3 Nucleon and delta Lagrangians

2.3.1 Leading-order Lagrangians

The leading-order Nπ and ∆π Lagrangians (diagonal in
N and ∆) required for a calculation with explicit pion,
nucleon and delta degrees of freedom in the presence of
external electromagnetic fields are [6,9]:

L(1)
N = N̄v [i v ·D + gA S · u]Nv ,

L(1)
∆ = − T̄µi

[
i v ·Dij − ξijI=3/2∆ + g1 S · uij

]
gµν T

ν
j ,

(2.4)

where Nv corresponds to the non-relativistic spin-1/2 nu-
cleon field and Tµi denotes the non-relativistic spin-3/2
delta field with free 4-vector index µ (in Rarita-Schwinger
notation) and an isovector index i (in isospurion nota-
tion) [6]. The 4-velocity vector vµ occurs in the non-
relativistic reduction of the fully Lorentz-invariant chi-
ral Lagrangians, and Sµ denotes the Pauli-Lubanski spin-
vector —details on calculating with non-relativistic chi-
ral effective field theories in the so-called “heavy-baryon”
regime can be found in [12]. The chiral tensors needed for
the calculation of the anomalous magnetic moments read

Dµ = ∂µ + Γµ − iV (s)
µ ,

Γµ =
1
2

[√
U

†
, ∂µ

√
U

]
− i

2

√
U

†
FR
µ

√
U − i

2

√
UFL

µ

√
U

†
,

uµ = i
√
U

† ∇µU
√
U

†
, uijµ = uµ δ

ij ,

Dij
µ = ∂µ δ

ij +
(
Γµ − iV (s)

µ

)
δij − iεijkTr

(
τk Γµ

)
, (2.5)

with the isospin indices i, j, k = (1, 2, 3). As we are only
working with two light flavors u, d, we identify V

(s)
µ =

e
2 Aµ as the isoscalar component of the external electro-
magnetic field. The isospin-3/2 projector is defined as
usual as ξijI=3/2 = δij− 1

3 τ
iτ j . As explained in subsect. 2.1,

we are explicitly taking into account the finite nucleon-
delta mass splitting already at leading order, denoted by
the parameter ∆ in eq. (2.4). Furthermore, gA and g1 are
the axial nucleon and delta coupling constants. It turns
out that g1 is not needed for the calculation of the mag-
netic moments of the nucleon to the order considered in
this work.

2.3.2 Next-to-leading-order (NLO) Lagrangian

The less-known NLO nucleon and delta Lagrangians can
be found in [6]. Here we only discuss the terms pertaining
to magnetic moments. Defining the chiral field tensors via

f+µν =
√
U

† {
∂µF

R
ν − ∂νF

R
µ − i

[
FR
µ , F

R
ν

]}√
U

+
√
U

{
∂µF

L
ν − ∂νF

L
µ − i

[
FL
µ , F

L
ν

]}√
U

†
,

V (s)
µν = ∂µV

(s)
ν − ∂νV

(s)
µ , (2.6)

we utilize the following representation of the NLO nucleon
and delta Lagrangians [6]:

L(2)
N = N̄v

{
− i

4M
[Sµ, Sν ]

( (
1 + κ0v

)
f+µν

+2
(
1 + κ0s

)
V (s)
µν

)
+ . . .

}
Nv , (2.7)

L(2)
∆ = T̄µi

{
− 1

2M

[
[Sα, Sβ ]

(
Dik
α D

kj
β −Dik

β D
kj
α

)
gµν

+a6 if+µνδ
ij + 2a7 iV (s)

µν δ
ij

]
+ . . .

}
T νj .

The two couplings κ0v and κ0s correspond to the (bare)
isovector and isoscalar anomalous magnetic moments of
the nucleon, taken in the chiral limit. Their strength is
determined by physics which lies outside of the chiral ef-
fective field theories. We, therefore, treat them as free pa-
rameters to be determined by a fit to lattice simulations
of the magnetic moments, as discussed in sect. 5. Like-
wise, a6, a7 are the two corresponding anomalous mag-
netic dipole moments of ∆(1232). It turns out that these
two couplings do not contribute in the calculation of the
magnetic moments of the nucleon to leading-one-loop or-
der —we therefore relegate a discussion of these interest-
ing quantities to forthcoming work.

2.4 Modified N∆ transition Lagrangian

While the leading-order πN and π∆ interaction La-
grangians discussed in the previous section follow the stan-
dard rules of chiral power counting and have been used
in many calculations, we now present a modified version,
more appropriate for our purposes, of the leading-order
chiral nucleon-delta transition Lagrangian in the presence
of an external 4-vector electromagnetic background field
Aµ. The leading-order N∆ transition Lagrangian we pro-
pose has the form

L(1)
N∆ = T̄µi

[
cA w

i
µ + cV i f

+ i
µν S

ν
]
Nv + h.c. , (2.8)

with

wiµ =
1
2

Tr
(
τ iuµ

)
, f+ i

µν =
1
2

Tr
(
τ if+µν

)
. (2.9)

It involves the axial (transition) coupling cA as well as
the (iso)vector (transition) coupling cV , which govern the
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strengths of the πN∆ and γN∆ vertices in the chiral limit,
respectively. In sect. 5 we will discuss numerical estimates
for these parameters. It is standard practice to include
the axial N∆ transition in the leading-order nucleon-delta
transition Lagrangian (e.g., see [6,13]) via the coupling
cA, whereas the leading term of (iso)vector N∆ transition
is usually only taken into account at sub-leading order
in the N∆ transition Lagrangian (see, e.g., eq. (112) of
ref. [6]). The main reason for this asymmetric treatment of
the axial and vector N∆ transition lies in the “standard”
counting (“naive power counting”) of the chiral tensors
in powers of the generic mass or momentum scale ε: The
(pseudo-) vector wiµ scales as order ε, whereas f+µν has
dimension ε2. We note that these counting rules, on the
one hand, lead to an asymmetric treatment of the vector,
axial-vector N∆ transitions by distributing them onto the
NLO, respectively, LO Lagrangians. On the other hand,
they result in a symmetric (NLO) treatment among the
magnetic γNN, γN∆ and γ∆∆ couplings, which, for ex-
ample, is appealing from the viewpoint of the SU(6) quark
model.

In this work we propose the ansatz —displayed
in eq. (2.8)— to promote the “off-diagonal” magnetic
N∆ transition into the leading-order N∆ transition La-
grangian, while leaving the corresponding “diagonal”
γNN, γ∆∆ couplings κ0v, a6 in the NLO Lagrangians of
eq. (2.7) as suggested by dimensional analysis4. In order to
visualize that the isovector transition structure in eq. (2.8)
is part of the leading-order Lagrangian, we assign an in-
trinsic power ε−1 to it

cV ≡ c
(−1)
V , (2.10)

rendering the structure c(−1)
V f+µν to scale as O(ε), as ex-

pected for a leading-order Lagrangian. In ref. [4] it was
argued that this intrinsic scaling of the (dimensionful)
coupling cV should be made more explicit by introduc-
ing a dimension-free coupling c̃V via c

(−1)
V ≡ c̃V /∆. On a

computational level that prescription is of course equiv-
alent to the structure in eq. (2.8). However, given that
we are after the quark mass dependence of the magnetic
moments, we do not want to prejudice as to which di-
mensionful quantity —be it ∆ or MN— sets the scale in
c
(−1)
V to result in a dimension-free coupling c̃V . The reason

for this caution lies in the fact that the two mass scales ∆
and MN have quite a different intrinsic quark mass depen-
dence of their own (see, e.g., the lattice simulations given
in ref. [14]), which would then (in higher orders of the
calculation) seem to alter the chiral extrapolation curve5

4 One may wonder why we do not propose to promote all
three couplings to the respective leading-order Lagrangians.
We refrain from doing so because for the “diagonal” couplings
κ0

v, a6 this would lead to the peculiar situation that the anoma-
lous (“Pauli”) contribution to the nucleon, delta magnetic mo-
ments would come in at leading order, while the 1/M sup-
pressed regular (“Dirac”) contribution is generated in sublead-
ing order via the non-relativistic reduction.

5 The counterterms in the chiral effective field theory do of
course not depend on the quark masses. However, the problem

depending on which parameterization was used for the
leading isovector N∆ transition Lagrangian. In order to
avoid this ambiguity, we therefore choose to work with a
dimensionful coupling cV ≡ c

(−1)
V , keeping in mind that it

carries an intrinsic power of ε−1.
One of the motivations given in ref. [4] that the mag-

netic N∆ transition coupling should scale as ε−1, whereas
the magnetic NN, ∆∆ couplings of eq. (2.6) obey the
standard chiral counting rules ∼ ε0, was the well-known
fact that quark model SU(6) symmetry factors relating cV
to the isovector anomalous moment of the nucleon typi-
cally underestimate the γN∆ transition strength by as
much as 30% [15]. This observation and the fact that many
observables in pion photo-/electroproduction [16] as well
as in nucleon Compton scattering [17] crucially depend on
a proper treatment of the M1 γN∆ transition in the chi-
ral effective field theory provide a physical motivation for
a more prominent role of this important structure, aside
from the formal discussion given above.

However, the main reason why we insist on having the
magnetic N∆ transition to be part of the leading-order
Lagrangian eq. (2.8) does not lie in its mere numerical
strength. After all the coupling cV —which only repre-
sents the leading term of this transition, taken in the chiral
limit— might be substantially different 6 from the physical
M1 γN∆ transition strength. Even more important from
the point of view of the quark mass expansion of the mag-
netic moments is the fact that this operator —as will be
discussed in sects. 3, 4— produces important non-analytic
quark mass dependence in the magnetic moments, which
turns out to be essential for a meaningful chiral extrapola-
tion. Nevertheless, one cannot proceed at will promoting
arbitrary operators into any order of the Lagrangian. One
has to show explicitly that the resulting effective field the-
ory can still be renormalized. For the specific calculation
considered here we demonstrate in the course of this paper
that this is indeed the case.

To summarize this central paragraph of our work: As
a result of our proposal, eq. (2.8), one obtains a symmet-
ric treatment between the axial and the (iso)vector N∆
transitions and, accordingly, a modified diagrammatic ex-
pansion. The consequences of this procedure for the case of
the chiral expansion of the anomalous magnetic moments
of the nucleon are the main physics topic of this paper7.
The chiral (i.e., quark-mass) expansion of any observable
is of course not changed by boosting operators into differ-
ent orders of the effective Lagrangian. However, different
expansion schemes can bring in important operators al-

discussed here arises if one makes the identification between
the associated chiral-limit parameters (e.g., the “bare” nucleon
mass M0

N ) and physical quantities (like MN = 0.938 MeV).
6 The chiral expansion of the M1 γN∆ transition form factor

based on “naive power counting” is analyzed in refs. [18,19].
Given that there are three additional counterterms [19] con-
tributing to this transition, we do not have good information
on the strength of the coupling cV at the moment.

7 Obviously there are interesting applications of this proposal
for calculations of electromagnetic scattering processes [16,17]
in effective field theory which are being explored [20].
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Table 1. N2LO counterterms and their β-functions contribut-
ing to the magnetic moments of the nucleon to leading-one-loop
order.

LEC Oi βi

D1 ∆i[Sµ, Sν ] f+
µν +c2A/

(
18π2f2

π

)
D2 ∆i[Sµ, Sν ]V

(s)
µν –

D3 ∆2 i[Sµ, Sν ] f+
µν −cAcV gA/

(
27π2f2

π

)
D4 ∆2 i[Sµ, Sν ]V

(s)
µν –

E1 i[Sµ, Sν ]χ
(s)
+ f+

µν +cAcV gA/
(
36π2f2

π

)
E2 i[Sµ, Sν ]χ

(s)
+ V

(s)
µν –

ready at lower orders in the calculation, thus making a
differing scheme more effective. Before we can go into the
calculation, however, we first have to specify some higher-
order couplings required for a systematic calculations with
our modified power counting.

2.5 N2-LO nucleon Lagrangian

The standard ChPT calculation of the magnetic mo-
ments in the heavy-baryon limit gives a finite result at
leading-one-loop order without any counterterm [2]. Al-
lowing for the possibility that the pion-cloud can also
fluctuate around an intermediate spin-3/2 baryon requires
the introduction of two counterterms proportional to the
octet-decuplet mass splitting ∆ to be able to renormal-
ize the leading-one-loop diagrams in a theory with ex-
plicit pion, nucleon and delta degrees of freedom based
on “naive power counting”, as was shown in ref. [21]. La-
beling the two corresponding structures D1 and D2, we
note that they are related to the couplings B28, B29 of
ref. [21] via D1 = B28/(4πfπ)2, D2 = B29/(4πfπ)2. Here
we again prefer the notation involving dimensionful cou-
plings in order to avoid speculating about the underlying
mass scale and its inherent quark mass dependence, anal-
ogous to our reasoning regarding cV in subsect. 2.4. As
explained in ref. [21] the introduction of these two cou-
plings is needed for the renormalization of the magnetic
γNN vertex function but does not lead to observable con-
sequences, as the two structures are quark mass indepen-
dent. The finite parts of these couplings can therefore be
utilized to guarantee decoupling of the delta-resonance in
the limit of fixed quark masses and ∆→ ∞ for any value
of the regularization scale λ, as will be discussed in sect. 3.

If one now moves on and modifies the “naive power
counting” —as we propose in eq. (2.8)— one is not sur-
prised to learn that this also leads to consequences in
the most general N2LO nucleon counterterm Lagrangian
needed to renormalize the leading-one-loop diagrams. For
the particular case of our magnetic moment calculations
we find —to leading-one-loop order— that moving the
magnetic N∆ transition into the leading-order Lagrangian
as proposed in eq. (2.8) in general induces four N3LO op-
erators with coupling constants D3, D4, E1, E2 to move

down into the N2LO Lagrangian8

L(3)
N = N̄v

{
D1∆i [Sµ, Sν ] f+µν +D2∆i [Sµ, Sν ]V (s)

µν

+D3∆
2 i [Sµ, Sν ] f+µν +D4∆

2 i [Sµ, Sν ]V (s)
µν

+E1 i [Sµ, Sν ]χ(s)+ f+µν + E2 i [Sµ, Sν ]χ(s)+ V (s)
µν

− 1
8M2

[
[Sµ, Sν ]

(
(1 + 2κ0v) f+µσ

+ 2 (1 + 2κ0s)V
(s)
µσ

)
vσDν + h.c.

]
+ . . .

}
Nv ,

(2.11)

with

χ
(s)
+ =

1
2

Tr
(√

U
†
χ
√
U

†
+
√
Uχ†√U

)
. (2.12)

Note that in the following we work in the isospin limit
mu = md = m̂ and therefore only need to consider
the isoscalar component of χ+. Throughout this calcu-
lation we utilize dimensional regularization and denote
the resulting infinities by the quantity L spelled out in
appendix A. All six counterterms then have the generic
structure

Lc.t.
N = Ci N̄v O

(3)
i Nv , (2.13)

with Ci = Cr
i (λ)+βi 16π2L and the associated β-functions

given in table 1. We observe that the four counterterms
can be separated into a scale (λ)-dependent finite and an
infinite part. Once more we want to stress that based on
“naive power counting” one would not expect to find the
local operators associated with D3, D4, E1, E2 among the
terms of the N2LO Lagrangian, as their structures χ

(s)
+

and f+µν , respectively, V (s)
µν , scale as ∼ ε2 each in standard

counting. In contrast to the coupling cV —which, in the
previous section, has been attributed an intrinsic power
ε−1 due to its importance— D3, D4, E1 and E2 obtain
their intrinsic power of ε−1 solely by the requirement that
every effective field theory based on the most general chi-
ral Lagrangian should be renormalizable, independent of
the particular organization of the perturbative expansion.
Following the notation of subsect. 2.4, we therefore write

E1 ≡ E
(−1)
1 , E2 ≡ E

(−1)
2 ,

D3 ≡ D
(−1)
3 , D4 ≡ D

(−1)
4 , (2.14)

rendering the structures
[
D

(−1)
3 ∆2 f+µν

]
,
[
D

(−1)
4 ∆2 V

(s)
µν

]
,[

E
(−1)
1 χ

(s)
+ f+µν

]
and

[
E
(−1)
2 χ

(s)
+ V

(s)
µν

]
to scale as ∼ ε3,

in accordance with the power of the N2LO nucleon La-
grangian.

8 In order to construct a complete set of N2LO nucleon coun-
terterms required to renormalize all possible 1-loop graphs in-
volving pions, nucleons and deltas in the presence of arbitrary
external fields for the here proposed new form of the leading-
order N∆ transition Lagrangian eq. (2.8), one would have to
perform a new one-loop renormalization analysis for single-
nucleon processes as done for example in ref. [22], which is
beyond the scope of this article.
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Finally, we comment on the observation that three of
the six β-functions in table 1 are zero, suggesting that
three counterterms would be sufficient to renormalize the
magnetic moments to leading-one-loop order. We note,
however, that this simplification only occurs for our spe-
cial choice of representation of the chiral field strength ten-
sors given in eq. (2.6). In the (more widely used) conven-
tions of ref. [12] —which encode the chiral field strength
tensors as F+

µν ≡ f+µν + 2V (s)
µν and Tr(F+

µν) ≡ 4V (s)
µν — one

would require six counterterms with non-zero β-functions.
Another reason for our retaining of D2, D4, E2 in the
N2LO Lagrangian eq. (2.11) lies in the fact that we want
to treat the (unknown) short-distance physics9 in the
isoscalar and the isovector sector of the theory in a sym-
metric fashion. With these remarks we close our discussion
on the required chiral Lagrangians and move onto the de-
tails of the calculation.

3 The calculation

At first glance the reader may wonder why we present yet
another calculation for the baryons’ magnetic moments,
as this topic is probably the best-studied one in the field
of chiral effective field theories. The leading non-analytic
quark mass dependence is known since the 1970s [23],
calculations with (octet) meson and (octet) baryon de-
grees of freedom were pioneered in baryon ChPT in the
late 1980s [24], the advent of heavy-baryon techniques
brought about many more calculations throughout the
1990s, including the first studies with intermediate decu-
plet baryons [25]. An overview of some recent calculations
and references can be found in [26].

When we present our leading-one-loop results for the
anomalous magnetic moments of the nucleon arising from
nucleon, delta and pion degrees of freedom as given by
the diagrams in fig. 1 and the corresponding amplitudes
in appendix A, we do not claim that we have calculated
any new contributions previously not considered in the
literature. In fact, ref. [25] contains even more one-loop
diagrams than we consider here. We point out that the
underlying philosophy between our work and for exam-
ple ref. [25] is a different one. In [25] the authors have
calculated all possible one-loop topologies contributing to
the magnetic moments based on the leading photon and
meson couplings to octet/decuplet baryons. In this work
our power counting —as discussed in sect. 2— establishes
a hierarchy among the one-loop diagrams, selecting the
ones given in eq. (A.1) to be leading-one-loop (≡ O(ε3))
and dictates the structure of counterterms to be included
at this order (cf. eq. (2.11)). Given that we spent the first
part of this paper arguing for a “modified power counting”
it should be obvious that chiral effective field theory for
low-energy baryon properties does not possess one unique
perturbative expansion parameter like αQED in quantum

9 It also turns out that —for the case of 2 flavors considered
here— E2 provides the leading quark mass dependence in the
isoscalar sector, see sect. 6.

Fig. 1. Diagrams contributing to the anomalous magnetic mo-
ment of the nucleon at leading-one-loop order.

electrodynamics. Due to the complex structure of the low-
energy hadron spectrum and the many different scales in-
volved, several counting approaches have to be explored,
our proposal in eq. (2.8) is only one possibility, albeit
a well-motivated one. Ultimately the success in describ-
ing phenomena determines which expansion scheme really
is “effective”. With this in mind we point out that our
leading-one-loop calculation of the anomalous magnetic
moments of the nucleon depends on only a few structures
and parameters, providing some “predictive” power with
respect to the few lattice data available at the moment.
This will be discussed in the upcoming subsections. Of
course it is possible to push the calculation to one higher
order (≡ O(ε4)) [27], which formally includes 35 extra-
diagrams, containing the remaining ones of ref. [25] as well
as some new ones10. On the other hand, at O(ε4) one en-
counters at least four additional unknown couplings, mak-

10 At O(ε4) one also has to take into account the first 1/M
corrections to the axial NN and N∆ vertices, e.g., see [6].
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ing the comparison to lattice data more strenuous, so we
defer it to a later stage [27].

The NLO calculation discussed here proceeds in a
straightforward manner, the results can be found in ap-
pendix A. To the order we are working, 10 one-loop topolo-
gies displayed in fig. 1 have to be analyzed —of which only
4 yield non-zero results (cf. appendix A). We note that
the isovector N∆ transition coupling cV discussed in the
previous section contributes to two of the loop diagrams.
We utilize dimensional regularization11 throughout, the β-
functions of the six counterterms are given in table 1. The
finite parts of the counterterms Er

1(λ), Er
2(λ) will be left

as free parameters and fixed from lattice data in sect. 5.
However, as already indicated in subsect. 2.5, matters are
different in the case of Dr

i , i = 1, . . . 4: The infinite parts of
these four counterterms are utilized to cancel divergences
∼ ∆L and ∼ ∆2L (cf. table 1). The finite parts of these
four structures cannot be observed separately from the
chiral-limit structures κ0v, κ

0
s. As suggested in ref. [21], one

can make use of this freedom in implementing decoupling
of the delta-resonance, e.g, we demand that the theory
with explicit delta degrees of freedom transforms itself into
a theory with just pion and nucleon degrees of freedom in
the limit ∆ → ∞ (for fixed quark masses). This implies,
for example, that all quark mass-independent polynomial
structures in ∆ must vanish, for any value of the chosen
regularization scale λ. With the results from appendix A
we find that the assignment

Dr
1(λ) =

c2A
36π2f2π

{
2 log

(
2∆
λ

)
− 5

3

}
,

Dr
2(λ) = 0 ,

Dr
3(λ) =

cAcV gA
27π2f2π

{
1
6
− log

2∆
λ

}
,

Dr
4(λ) = 0 , (3.1)

satisfies the condition of vanishing polynomial structures.
The decoupling of the delta-resonance achieved by this
choice can be best seen in the limit mπ/∆→ 0, which we
discuss in subsect. 4.2.2. After these technical comments
we finally proceed to the physical results.

4 Analytic results

4.1 General remarks

We now turn to the quark mass dependence of the proton
and neutron magnetic moments, µp and µn. Two remarks
are in order at this point. First, we note that the chiral
corrections concern only the anomalous parts κp, κn of
the magnetic moments

µp = 1 + κp , µn = κn . (4.1)

11 For recent work analyzing the magnetic moments of the
octet baryons employing lattice regularization methods see
ref. [28].

Second, the chiral corrections affect the isovector and
isoscalar anomalous magnetic moments of the nucleon
κv, κs quite differently. We therefore discuss our results
in the isospin basis defined by

κv = κp − κn , κs = κp + κn . (4.2)

Both κv and κs are functions of the isospin averaged quark
mass12 m̂ = (mu + md)/2 and of the chiral condensate
parameter B0. These two quantities are combined to form
the leading-order term in the quark mass expansion of the
(squared) pion mass. One finds [8]

m2
π = 2m̂B0 {1 +O(m̂B0)} , (4.3)

which to leading order corresponds to the well-known Gell-
Mann, Oakes, Renner relation [29]. Changing the value
of the light-quark mass m̂ (in a numerical simulation of
QCD) therefore leads to a quadratic change of the pion
mass (modulo higher-order corrections). In the following,
we present our results as functions of mπ. When compar-
ing a magnetic-moment calculation performed in a chiral
effective field theory to lattice QCD data, one therefore
requires these data as a function of the mass of the lowest-
lying 0− boson in the simulation, which is identified as the
corresponding lattice pion. It is understood, that both the
pion mass and the associated nucleon magnetic-moment
simulation are performed with identical lattice parameter
input. Such correlated lattice results have been reported
in the literature [3] and we will discuss them in sect. 5.
Here we focus on the analytic results.

4.2 Isovector anomalous magnetic moment

4.2.1 Analytic results to leading-one-loop order

All results presented in this section can be directly read
off from the amplitudes shown in appendix A, referring to
the relevant Feynman diagrams shown in fig. 1. The NLO
result of SU(2) non-relativistic (“heavy”) baryon ChPT
with only pion and nucleon degrees of freedom (in the fol-
lowing denoted as case A) reproduces the well-known [23]
leading non-analytic quark mass correction to the isovec-
tor anomalous magnetic moment of the nucleon

κAv = κ0v,A − g2AmπM

4πf2π
+ N2LO . (4.4)

The standard power counting of heavy-baryon ChPT tells
us that to NLO this result originates from graphs a) ... e)
of fig. 1. All other contributions are relegated to higher-
order corrections13.
12 In addition to neglecting all effects from strong isospin
breaking —i.e. the mu −md mass difference— we also do not
consider electromagnetic corrections arising from the different
charges of the light u- and d-quarks. All other quarks taken
to be infinitely heavy and are effectively integrated out of the
theory.
13 The same calculation performed to NLO in relativistic
baryon ChPT is discussed in appendix B. It contains many
more structures which are part of the higher-order corrections
in the heavy-baryon approach discussed here.
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Recently the chiral corrections to κv have also been
evaluated to NLO in the SU(2) Small Scale Expansion
approach [21], which includes explicit pion, nucleon and
delta degrees of freedom (in the following denoted as case
B). With the additional counting prescription for the fi-
nite scale ∆ (cf. subsect. 2.1), this calculation follows the
standard (“naive”) power counting rules of baryon ChPT
and thus only includes the coupling cA in the N∆ transi-
tion Lagrangian of eq. (2.8):

κBv = κ0v,B − g2AmπM

4πf2π
+

2c2A∆M
9π2f2π

×
{√

1 − m2
π

∆2
log [R(mπ)] + log

[mπ

2∆

]}
+ N2LO ,

(4.5)

with

R(mπ) =
∆

mπ
+

√
∆2

m2
π

− 1 . (4.6)

To NLO this result originates from graphs a) ... i) of fig. 1,
all other contributions are again relegated to higher or-
ders.

Now we present the chiral corrections to κv calculated
to NLO in our modified scheme (in the following denoted
as case C). In contrast to the calculation of ref. [21],
we use the modified leading-order nucleon-delta transi-
tion Lagrangian eq. (2.8) which includes cV —the leading
term of the isovector γN∆ M1 transition— as well as the
induced additional N2LO counterterm E1 of eq. (2.11),
required for renormalization of the extra-one-loop graphs
involving cV . We obtain

κCv = κ0v, C − g2AmπM

4πf2π

+
2c2A∆M
9π2f2π

{√
1 − m2

π

∆2
log [R(mπ)] + log

[mπ

2∆

]}

−8E1(λ)Mm2
π +

4cAcV gAMm2
π

9π2f2π
log

[
2∆
λ

]

+
4cAcV gAMm3

π

27πf2π∆

−8cAcV gA∆2M

27π2f2π

{(
1 − m2

π

∆2

)3/2

log [R(mπ)]

+
(

1 − 3m2
π

2∆2

)
log

[mπ

2∆

] }
+ N2LO . (4.7)

This NLO result arises from the graphs displayed in fig. 1.
We note that very few diagrams, of which only 5 are non-
zero (cf. appendix A) to this order, produce such an intri-
cate quark mass dependence in κv, making the modified
scheme proposed here very effective in calculating chiral
corrections for electromagnetic quantities. Before we study
the quantitative differences in the chiral corrections to κv
between schemes A,B and C, we first draw a qualitative
picture of the extra physics contained in scheme C. For a

proper comparison we therefore move on to a discussion
concerning the chiral limit.

4.2.2 Chiral-limit results

For completeness we show here the chiral-limit results of
the three different effective field theory calculations for
κv discussed above —all calculated to NLO accuracy by
Taylor expansions of eqs. (4.4),(4.5),(4.7) —

κAv |NLO = κ0v,A − g2AM

4πf2π
mπ

κBv |NLO ≈ κ0v,B − g2AM

4πf2π
mπ +m2

π

[
− c2AM

18π2f2π∆

+
c2AM

9π2f2π∆
log

(mπ

2∆

)
+ N2LO

]

+m3
π

[
0 + N2LO

]
+m4

π

[
c2AM

144π2f2π∆3

+
c2AM

36π2f2π∆3
log

(mπ

2∆

)
+ N2LO

]
+ . . .

κCv |NLO ≈ κ0v, C − g2AM

4πf2π
mπ

+m2
π

[
− c2AM

18π2f2π∆
+

c2AM

9π2f2π∆
log

(mπ

2∆

)

−8E1(λ)M +
4cAcV gAM

9π2f2π
log

(
2∆
λ

)

+
2cAcV gAM

27π2f2π
+ N2LO

]

+m3
π

[
4cAcV gAM

27πf2π∆
+ N2LO

]

+m4
π

[
c2AM

144π2f2π∆3
+

c2AM

36π2f2π∆3
log

(mπ

2∆

)

−cAcV gAM

12∆2π2f2π
+
cAcV gAM

9∆2π2f2π
log

(mπ

2∆

)

+N2LO
]

+ . . . (4.8)

First we observe that schemes B and C produce a whole
string of terms proportional to mn

π. We note that all these
terms —with exception of the chiral-limit couplings κ0v—
do occur at the same NLO order in the chiral power count-
ing. They just represent the first few terms of an infinite
Taylor series in mπ arising from the chiral-limit expan-
sion of the logarithms in eqs. (4.5),(4.7). We note that
all these Taylor coefficients starting from m2

π will receive
corrections at N2LO and higher orders. One also observes
that the decoupling of the delta-resonance as discussed in
sect. 3 is manifest14 in eq. (4.8), based on the counterterm
prescription given in eq. (3.1).
14 The logarithmic-scale dependence ∼ log∆/λ in eq. (4.8)
retains the information about the existence of the delta-
resonance in the decoupling limit ∆ → ∞. Decoupling is pre-
sumably already achieved for finite ∆ if ∆ ≥ Λχ, where Λχ

denotes the chiral-symmetry breaking scale.
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One can now clearly see that the power counting of
scheme C incorporates the first four terms in the chiral
expansion of κv already at NLO. Specifically, we note that
the structures proportional to m3

π are absent to this or-
der15 in schemes A and B. In the traditional expansion
scheme A of heavy-baryon ChPT such terms could only
be generated at N3LO (i.e., at the two-loop level), thus
making the explicit calculation of such terms extremely
prohibitive. The analytic results presented here and in
the previous section are completely general. In order to
produce chiral extrapolation functions for the magnetic
moments which connect lattice data to the physical world
(i.e., mπ = 140 MeV) and even to the chiral limit, we
now move on into the numerical analysis of the results
presented so far.

5 Numerical results

5.1 General remarks

In principle all couplings and masses —aside from mπ—
occuring in eqs. (4.4),(4.5),(4.7) are to be taken at their
values in the chiral limit. However, for most of them the
chiral-limit values are only poorly known. On the other
hand, the difference between the values taken at mπ = 0
and the physical values of the couplings is of higher or-
der, allowing us to resort to physical parameters —given
in table 2— in those cases where we have only limited
information.

We note that to the order we are working the nucleon
mass M is not really a parameter occuring in the calcu-
lation, as can be easily seen from eq. (A.1). Accordingly,
an overall M can be factored out on the right-hand side
of eqs. (4.4),(4.5),(4.7). The scale M is just a convention
to obtain magnetic moments in units of nuclear magne-
tons ([n.m.]) [30]. For the axial coupling constant gA of
the nucleon we use its physical value [30]. Not much is
known about its value in the chiral limit g0A, but recent
lattice data suggest that the quark mass dependence of
this quantity is rather flat [31]. For the pion decay con-
stant we utilize its physical value [2], as the difference to
f0π is known to be be only a few percent [8]. In order to fix
the parameter ∆ —representing the nucleon-delta mass
splitting— we employ the dispersion theoretical analysis
of ref. [32] to obtain the real part of the complex delta
mass M∆ = (1211− i 50) MeV. Recent lattice simulations
discussed in [14] suggest that ∆ also has a rather weak
quark mass dependence. Finally, we fix the leading axial
N∆ coupling constant cA by reproducing the imaginary
part16 of the delta mass given in ref. [32]. Unfortunately
the quark mass dependence of the axial N∆ couplings is
not known. We therefore assume that the physical value
for cA constitutes a decent approximation for c0A.

15 Structures ∼ m3
π are also generated at NLO in relativistic

baryon ChPT, as discussed in appendix B.
16 The value of cA given in table 2 corresponds to a strong-
decay width of Γ∆ = 100 MeV [32]. We note that the delta
properties given in ref. [32] are evaluated at the T -matrix pole.

Table 2. Input parameters used in this work. With “physi-
cal value” we denote their magnitudes at the point where the
lowest-lying Goldstone boson in the theory has the mass of
138 MeV and is identified with the pion. The physical mean-
ing of these parameters is explained in sect. 2. The nucleon
and pion masses are taken as isospin averaged.

Parameter Physical value

gA 1.267
cA 1.125
fπ 0.0924 GeV
M 0.9389 GeV
∆ ≡ Re [M∆] −M 0.2711 GeV

If it turns out that some aspects of the reasoning pre-
sented here do not hold, then the other couplings —which
are directly fitted to the lattice data in the upcoming two
sections— have to compensate for any wrong assignments.
We consider this issue to be only a temporary problem.
As soon as more low mass lattice data for a variety of nu-
cleon structure operators become available, one can fit all
parameters directly to lattice data.

5.2 Numerical analysis of schemes A and B

We first discuss the numerical results for schemes A and
B. With most of the parameters of eqs. (4.4),(4.5) deter-
mined from known physical quantities (resulting values are
shown in table 2), it is clear that we have one unknown to
fit in each case, κ0v,A and κ0v,B . One quickly realizes that
neither one of the two extrapolation functions provides
an mπ-dependence that is compatible with the lattice re-
sults discussed in [3]. These lattice data are normalized to
magneton units expressed in terms of the physical nucleon
mass17. This is precisely what is appropriate for a compar-
ison at the chiral 1-loop level. We therefore decide to fit
κ0v,A and κ0v,B in such a way that we reproduce the physical
κv = 3.706 [n.m] [30] for mπ → 0.138 GeV. The result of
scheme A (NLO HBChPT, eq. (4.4)) is shown in fig. 2 by
the dashed curve, whereas scheme B (NLO SSE, eq. (4.5))
is represented by the dot-dashed curve. While both curves
show a rather similar chiral-limit behavior, they must be
considered inadequate for mπ > 400 MeV, as they even
change sign in this region18. In fact, the NLO extrapola-
tions shown in fig. 2 provide such a poor mπ-dependence
compared to the lattice data, that a (hypothetical) NnLO
higher-order calculation in scheme A or B which might be
more compatible with the data shown in fig. 2 would con-
stitute such a large correction to the NLO result presented
here, that one would have to worry about the “convergence
properties” of the respective expansion scheme. To sum-
marize our discussion on the numerics for schemes A and
17 We thank M. Göckeler for pointing this out to us.
18 Even when loosening our input provided by table 2, by
allowing the (chiral limit) parameters of eqs. (4.4),(4.5) to be
slightly different from the physical values shown in table 2, the
qualitative picture in fig. 2 does not change.
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Fig. 2. Pion mass dependence of the isovector anomalous mag-
netic moment in nuclear magnetons. The curves shown de-
note the standard NLO heavy-baryon ChPT (long-dashed line,
scheme A, see eq. (4.4)) and the NLO Small Scale Expansion
calculation (short-dashed line, scheme B, see eq. (4.5)). The
solid line denotes the LO Relativistic BChPT result discussed
in appendix B. The lattice data are taken from ref. [3]. The
physical κv = 3.706 [n.m.] is displayed by the full circle.

B, we conclude that even future higher-order calculations
in these two approaches presumably can only describe the
mπ-dependence of the isovector anomalous magnetic mo-
ment for mπ < 400 MeV, making the comparison with
lattice data impossible for the moment. We also note that
the relativistic version of scheme A discussed in appendix
B seems to work well out to mπ ≈ 500 MeV, as shown by
the solid line in fig. 2.

5.3 Numerical analysis of scheme C

The situation is more complicated for the NLO result of
scheme C (eq. (4.7)), where —at a given scale λ— we
have, in principle, 7 parameters to deal with:

κ0v,C , g
0
A, f

0
π , c

0
A,∆0, E

r
1(λ), c0V . (5.1)

Ideally, we would fit these parameters to lattice QCD sim-
ulations of the isovector anomalous magnetic moment for
mπ ≤ 600 MeV19. However, at the moment the data situ-
ation does not allow fits in this parameter range [3]. Based
on our estimate regarding the applicability of leading-one-
loop calculations in chiral effective field theories we could
just stop here with our analysis and wait for future sim-
ulations at smaller quark masses before we continue to
discuss the extrapolation curve given by eq. (4.7). How-
ever, we observe that the lattice data discussed in ref. [3]
are basically flat or at most weakly dependent on mπ in
the range 600 MeV < mπ < 1 GeV≈ Λχ (cf. fig. 2). This
observation leads us to the following hypothesis:

19 We take this “naive guess” on the range of applicability of
a leading-one-loop calculation based on the success of chiral
effective field theory for predicting virtual Compton scattering
cross-sections on a nucleon at three momentum transfer | q | ∼
600 MeV [33].

If the extrapolation function of a chiral effective
field theory calculation contains sufficient quark mass-
dependent structures to yield such a “plateau” as suggested
by the lattice data in this mass range, then the higher-
order corrections —though formally large (∼ (mπ/Λχ)n)
for mπ > 600 MeV— are presumably small, as they cannot
deviate much from the plateau to which the extrapolation
curve is fitted.

The “weak” mass dependence of the lattice data for
large quark masses in this view acts as “boundary con-
dition” for the chiral extrapolation function, constraining
the extrapolation to small quark masses more efficiently
than expected from a chiral power counting for individual
polynomial structures. Obviously a necessary condition for
this hypothesis to make sense is the requirement that the
resulting extrapolation curve compares reasonably well
with the empirical value for κv at mπ = 138 MeV.

With this hypothesis in mind we now leave the secure
realm of chiral effective field theory and attempt to find a
set of numerical values for the parameters in list 5.1 that
is consistent with the lattice data of ref. [3] in the range
600 MeV < mπ < 1 GeV and still gives a meaningful
“prediction” for κv at mπ = 138 MeV. To pursue this
program we employ the following philosophy: We deter-
mine the number of degrees of freedom that can be fixed
from lattice data for effective pion masses mπ < Λχ ≈ 1
GeV. For the correlated (κ, mπ) lattice data given in [3]
it turns out that this number is three20. We then pick the
corresponding number of couplings from list 5.1 according
to the following principles:
1) Couplings for which we have no other physical infor-

mation available.
2) Couplings for which we expect a significant difference

between the physical and the chiral-limit value.
Based on the first argument we pick κ0v,C and Er

1(λ) from
list 5.1. This leaves us with one more parameter that we
can constrain from lattice data. Based on argument two,
we choose cV , the leading coupling of the magnetic M1
γN∆ transition in the chiral limit introduced in eq. (2.8).
Indeed at the physical point one expects sizable complex-
valued corrections to this transition from the pion cloud of
the nucleon [18,19] (as well as interference from three ad-
ditional higher-order couplings [19]). The remaining four
couplings —g0A, c

0
A, f

0
π ,∆0— are taken at their physical

values gA, cA, fπ,∆, as given by table 2, in complete anal-
ogy to the procedure in schemes A and B discussed in
the previous section. The induced quark mass difference
is again considered to be part of the NnLO, n ≥ 2 correc-
tions in eq. (4.7). Next we utilize the three lattice points of
ref. [3] together with the parameters given in table 2 as in-
put and generate —at a chosen scale21 λ— numerical esti-
mates for the three unknown parameters κ0v,C , E

r
1(λ) and

20 There are actually four lattice points below 1 GeV dis-
cussed in [3], based on the simulations of refs. [34,35]. How-
ever, the two points around mπ = 800 MeV are only separated
by 5 MeV, effectively only providing one degree of freedom for
the fit.
21 The chiral extrapolation curves shown in figs. 2–7 do of
course not depend on the choice of λ.
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Fig. 3. Pion mass dependence of the isovector anomalous magnetic moment in nuclear magnetons. The full curve denotes
the NLO calculation in the modified expansion scheme C of eq. (4.7). The lattice data are taken from ref. [3]. The physical
κv = 3.706 [n.m.] is displayed by the full circle.

Table 3. Values of the three isovector and two isoscalar pa-
rameters obtained from fitting to the lattice data of ref. [3] for
different values of the regularization scale λ, using as additional
input the parameters displayed in table 2.

Parameter λ=0.77 GeV λ=1 GeV

κ0
v,C +5.1∓0.4 +5.1∓0.4

c0V − (2.26±0.06) GeV−1 − (2.26±0.06) GeV−1

Er
1(λ) − (4.4±0.1) GeV−3 − (3.85±0.1) GeV−3

κ0
s,C −0.11 −0.11

Er
2(λ) +0.074 GeV−3 +0.074 GeV−3

cV shown in table 3. The resulting couplings are of rea-
sonable size22 and produce the chiral extrapolation curve
of scheme C shown in fig. 3. The full curve is obtained
by fixing the three couplings from the central values of
the lattice data [3], whereas the dotted curves indicate
the error band resulting from the errors of the lattice
data [36]. For large pion masses the curve reproduces —by
construction— the nearly flat behavior suggested by the
lattice data, whereas for low masses (mπ < 400 MeV) one
observes considerable curvature. Surprisingly the curves
extrapolate rather well into the low mass region, as indi-
cated by the full circle representing the physical κv.

One can now ask the question “how large is the isovec-
tor anomalous magnetic moment κv in a world where the

22 It turns out that the radiative decay width of ∆(1232) esti-
mated from the fitted value of table 3 is by a factor of 4 smaller
than the number given in [30]. Either this means that the prop-
erties of the magnetic γN∆ transition are really substantially
different in the chiral limit than at the physical point, or that
there are significant higher-order corrections which get lumped
into an averaged number for cV . This issue can only be decided
in an N2LO analysis [27].

lattice pion mass is 138 MeV ?” Given that this piece of
information was not used in determining the parameters
in tables 2 and 3, we obtain —via eq. (4.7)— the “predic-
tion”

κv|mπ→138MeV = 3.5 ± 0.4 [n.m.] . (5.2)

This does not seem to be a great achievement, given
the experimental accuracy to which the anomalous mag-
netic moments of proton and neutron are known (κexpv =
3.706 . . . [n.m.] [30]). However, it is by no means obvious
that our chiral extrapolation should come anywhere close
to the experimental number in view of the rather large ex-
trapolation range, the sizable error bars of the lattice data,
the non-negligible curvature required for a successful ex-
trapolation to small quark masses and the large associated
mass scales of the lattice pion. We, therefore, consider the
result of eq. (5.2) a rather surprising success. Along the
same lines one can also determine the isovector anomalous
magnetic moment of the nucleon in the chiral limit. We
obtain the prediction

κv|mπ→0 = 5.1 ± 0.4 [n.m.] , (5.3)

i.e. we find a significant enhancement over the value at
the physical point. We note that it is the coupling of the
nucleon’s pion cloud to the external electromagnetic field
applied to probe the strength of the nucleon’s magnetic
moment, that is responsible for this reduction in κv when
one slowly increases the quark masses from 0 to about
8 MeV. Diagrammatically this effect is best displayed by
diagram d) in fig. 1, which provides the bulk of the ef-
fect and corresponds to the Caldi-Pagels term displayed
in eq. (4.4).

Ultimately the hypothesis formulated above about the
applicability of eq. (4.7) into the realm of mπ > 600 MeV
due to suspected strong cancellations among the higher-
order corrections can only be tested once the N2LO cor-
rections are fully calculated and analyzed [27], but the
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non-trivial physical and chiral-limit predictions given by
eqs. (5.2),(5.3) look rather promising in this respect. We
now proceed to the (numerical) chiral-limit discussion,
which will provide some insight into the dynamical ori-
gin of the successful extrapolation function of scheme C
generated in this section.

5.4 Numerical analysis of the chiral limit

In this section we discuss the interplay between the various
contributions to κv by looking at the chiral-limit expan-
sion of all three schemes discussed in subsect. 4.2.2. With
tables 2 and 3 we obtain

κAv [n.m.]|NLO = 5.645 − 14.05
GeV

mπ

κBv [n.m.]|NLO ≈ 5.859 − 14.05
GeV

mπ

+
m2
π

GeV2

(
0.6480 + 5.780 log

mπ

GeV

)
+

m4
π

GeV4

(
16.95 + 19.66 log

mπ

GeV

)
+ . . .

κCv [n.m.]|NLO ≈ 5.109 − 14.05
GeV

mπ

+
m2
π

GeV2

(
36.63 + 5.780 log

mπ

GeV

)
− 61.63

m3
π

GeV3

+
m4
π

GeV4

(
24.43 − 34.61 log

mπ

GeV

)
+ . . . , (5.4)

which leads to the following observations:
1) These approximate formulae only hold for pion masses

below 400 MeV. For detailed numerical studies one
should use the formulae of eq. (4.7) which contain the
full analytic structure.

2) These formulae display Taylor coefficients of a se-
ries in mn

π. There is no hierarchy in these numbers
in the sense that coefficients for small values of n
are larger than the ones for high values of n. As al-
ready explained in subsect. 4.2.2, these coefficients
just arise from Taylor expanding the logarithms of
eqs. (4.4),(4.5),(4.7). All the structures —except for
the quark mass-independent leading terms— displayed
in eq. (5.4) are in fact part of the same chiral or-
der (NLO) in their respective expansion schemes A,
B and C. It is therefore not meaningful to look for
“convergence” in this representation of the quark mass
expansion of the magnetic moments. Convergence will
be studied by calculating the N2LO corrections to
eqs. (4.4),(4.5),(4.7), Taylor expanding the full result
as done here and then comparing by what amount the
individual Taylor coefficients displayed in eq. (5.4) have
changed when one moves from NLO to N2LO accu-
racy. At present the N2LO analyses in schemes B and
C do not exist yet [27]. As indicated in sect. 3 they
involve several new unknown couplings, therefore a
detailed evaluation can only take place if more lat-
tice data (preferably at smaller quark masses) become
available in the correlated (κ, mπ) representation em-
ployed here.

3) Equation (5.4) gives a good idea why scheme C is so
much more effective than scheme B with its “naive
power counting”. The extra-structure ∼ m3

π actually
carries a rather large coefficient23 and also the terms
∼ m2

π are significantly enhanced in C. As can be
seen from eq. (4.8), both structures are intimately
connected with the isovector N∆ transition governed
by cV and the induced counterterm E1. Given that
these two couplings have such a strong impact on the
quadratic and the cubic term in the chiral expansion,
our proposal of eq. (2.8) seems well justified.

With these remarks we close our discussion on the chiral
extrapolation function of the isovector anomalous mag-
netic moment and move on to the isoscalar sector.

6 Isoscalar anomalous magnetic moment

In contrast to the isovector anomalous magnetic mo-
ment, there is hardly any quark mass dependence for the
isoscalar anomalous magnetic moment of the nucleon at
NLO in chiral effective field theory calculations. In the
three schemes discussed above one finds

κAs = κ0s, A + 0 + N2LO ,

κBs = κ0s,B + 0 + N2LO ,

κCs = κ0s, C − 8E2Mm2
π + N2LO . (6.1)

Only scheme C shows any dependence on the quark
masses to this order [4]. We observe that this quark mass
dependence is not related to chiral dynamics but solely
arises from an internal quark mass dependence of the
core/bare spin-1/2 nucleon. Its origin (and the strength
of the associated counterterm E2) is therefore outside the
range of the effective field theory.

An extrapolation of the isoscalar moment data to
smaller quark masses analogous to the one in the isovec-
tor sector is therefore unreliable at this order. Moreover,
due to the smallness of the isoscalar anomalous magnetic
moment and the correspondingly large error bars of the
lattice simulation reported in [3], we must conclude that
at present extrapolations in the isoscalar sector are not
feasible. Figure 4 summarizes the lattice data situation
for pion masses below 1 GeV. The curve shown in this
figure is obtained by fitting κ0s,C and E2 to the physical
value and to the lattice point at mπ = 800 MeV. The re-
sulting fit parameters are given in table 3. Our result in
the isoscalar sector therefore is not meant as an extrapo-
lation but at the moment merely serves as a “best guess”
(within scheme C) for the quark mass dependence in κs.
Nevertheless, we have to utilize this result later when we
compare with the Padé fits of the Adelaide group for the
magnetic moments of proton and neutron.

Finally, we briefly comment on the leading-quark mass
dependence to the isoscalar anomalous magnetic moment
of the nucleon, that does arise from chiral dynamics. It is
23 For a discussion of these structures in leading-one-loop rel-
ativistic baryon ChPT we refer to appendix B.
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Table 4. Parameters used in the Padé fit of the magnetic moments, taken from ref. [3]. For our comparison with the Padé
ansatz we employ the parameters of the “best fit”. For details about the constrained “Fit II” see ref. [3].

Proton Best fit Fit II Neutron Best fit Fit II

µ0
p 3.31 [n.m.] 3.39 [n.m.] µ0

n −2.39 [n.m.] −2.40 [n.m.]
αp 1.37 GeV−1 1.37 GeV−1 αn 1.85 GeV−1 1.85 GeV−1

βp 0.452 GeV−2 0.582 GeV−2 βn 0.271 GeV−2 0.412 GeV−2
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Fig. 4. Pion mass dependence of the isoscalar anomalous mag-
netic moment in nuclear magnetons. The full curve represents
the suggested pion mass dependence of the modified expansion
scheme C of eq. (6.1). The lattice data are taken from ref. [3].
The physical κs = −0.1202 [n.m.] is displayed by the full circle.

known that at the one-loop level one obtains a contribu-
tion if one extends the theory to the case of three active fla-
vors —SU(3) baryon ChPT— with quark masses (m̂,ms).
For the leading non-analytic quark mass dependence in a
theory with only octet mesons and octet baryons as ac-
tive degrees of freedom —corresponding to scheme A in
the SU(2) sector— one finds [23]

κSU(3)s = κ0s −
MN mK

24πF 2
π

(
5D2 − 6DF + 9F 2

)
+ N2LO ,

(6.2)

with

m2
K = (m̂+ms)B0 {1 + O(M)} (6.3)

denoting the kaon mass (squared). We note that this con-
tribution arises from diagram d) in fig. 1 if one allows the
complete baryon and meson octet as possible intermedi-
ate states. Fπ = (fπ + fK)/2 denotes the average of the
pion and kaon decay constants to this order and F, D are
the SU(3) axial coupling constants [9] with the constraint
gA = F + D. We also note that for the case of three ac-
tive flavors the isoscalar anomalous magnetic moment of
the nucleon arises from two short-distance counterterms
(e.g., see the Lagrangian discussed in [25]). Given that
the present lattice data in the isoscalar sector as shown
in fig. 4 are not sufficiently accurate, we do not embark
on a numerical study of eq. (6.2) or its combination with
eq. (6.1).

7 Comparison to Padé approximants and the
quark model

In 1998 the Adelaide group suggested [3] a simple parame-
terization for the quark mass dependence of the nucleons’
magnetic moments based on Padé approximants. For their
“best fit”24 they used the following functional dependence:

µp,n =
µ0p,n

1 + αp,nmπ + βp,nm2
π

, (7.1)

with values of the parameters given in table 4. In fig. 5
we show this Padé fit as the dashed curve, whereas our
combined central value result in scheme C

µCp = 1 + (κCs + κCv )/2 ,

µCn = (κCs − κCv )/2 , (7.2)

is represented by the full curve, utilizing the parameters
given in tables 2 and 3 for κCv from eq. (4.7) and κCs from
eq. (6.1). Surprisingly, both parameterizations agree quite
well and are certainly compatible within the present error
band. Minor differences can be found in the curve for the
neutron and for really small pion masses near the chiral
limit, but at present both parameterizations are indistin-
guishable due to the sizable extrapolation errors originat-
ing from the lattice error bars [36]. Both parameterizations
of the chiral corrections to the magnetic moments indicate
that for small quark masses approaching the “physical”
values, there is indeed a substantial curvature with respect
to mπ beyond the leading non-analytic Caldi-Pagels term
of eq. (4.4). We note again that, a priori, there is no reason
to expect that a simple Padé ansatz as in eq. (7.1) cap-
tures all the important chiral physics, especially in view of
potentially large logarithmic terms generated by the pion-
cloud dynamics. Judging from the chiral-limit result of our
chiral extrapolation C displayed in eq. (5.4) the numerical
coefficients in front of the m2n

π logmπ structures are either
small (cf. n = 1) or get canceled by corresponding m2n

π

polynomial structures (cf. n = 2). The dynamical origin of
this logarithmic suppression is not known at the moment.
Nevertheless, we observe that our microscopic calculation
agrees well with the extrapolation formula eq. (7.1) for the
proton and neutron magnetic moments.

It is instructive to compare the quark mass depen-
dence of the ratio of magnetic moments with SU(6) quark
model predictions. In ref. [37] it was noted that for a pion

24 The Adelaide group also includes lattice points above 1
GeV pion mass in their analysis and obtained a good fit
throughout the whole region in mπ.



500 The European Physical Journal A

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

4

p,n

m [GeV]π

µ

Fig. 5. Pion mass dependence of the magnetic moments of proton (upper curves) and neutron (lower curves) in nuclear
magnetons. The full curve represents the best fit in the modified expansion scheme, whereas the dashed curve denotes the Padé
extrapolation formula eq. (7.1). Our error estimate is given by the dotted curves. The lattice data are taken from ref. [3]. The
physical values µp = 2.793 [n.m.], µn = −1.913 [n.m.] are displayed by the full circles.

mass of ∼ 240 MeV the proton to neutron ratio µp/µn
would yield the quark model prediction of −3/2, leading
to the conclusion that the good agreement between the
quark model —which knows nothing of the light current
quark masses discussed here— and the experimental ratio
µp/µn = −1.46 is accidental. In fig. 6 we show that our
parameterization for the ratio of the magnetic moments
given via eq. (7.2) (full curve) follows the trend of the Padé
formula (dashed curved) [37]. Our best fit curve already
gives a ratio of −3/2 for mπ ∼ 150 MeV, albeit the error
band of our extrapolation (dotted curves) arising from the
lattice data is sizable in this quark mass regime, pointing
again to the need for lattice data at smaller quark masses
to set stronger constraints on the chiral extrapolation. The
restoration of the quark model results in the limit of very
heavy-quark masses discussed in [37] is beyond the realm
of applicability of chiral effective field theory, so we will
not discuss it here.

While the µp/µn ratio shown in fig. 6 allows extrap-
olation curves to lie near the SU(6) quark model predic-
tion at least for certain values of light-quark masses, this
is not the case for the ratio of the anomalous magnetic
moments shown in fig. 7. The SU(6) quark model value
κp/κn = −1 is not reached by any of the two extrapola-
tion curves in the small quark mass regime. However, it
is interesting to note that this ratio seems to be rather
insensitive to quark mass effects beyond the leading non-
analytic (Caldi-Pagels) term given in eq. (4.4) for pion
masses up to 250 MeV, indicated by the dot-dashed curve
in fig. 7 corresponding to scheme A of eqs. (4.4),(6.1).
Whereas in the other observables (e.g., see figs. 3, 5) the
leading non-analytic term is not even sufficient to extrap-
olate from the chiral limit to the physical pion mass, the
ratio κp/κn seems well suited for future chiral extrapola-
tions of lattice data with small quark masses. With this
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m [GeV]π
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Fig. 6. Pion mass dependence of the ratio of the magnetic mo-
ments. The physical value µp/µn = −1.46 is denoted by the
full circle, whereas the SU(6) quark model prediction of −3/2
is given by the horizontal straight line. The chiral extrapola-
tion result based on eq. (7.2) is given by the solid curve, with
extrapolation errors indicated by the dotted lines. The corre-
sponding curve based on the Padé formula of eq. (7.1) is shown
as the dashed line.

observation we move on to a brief discussion regarding the
influence of quenching.

8 Effects of quenching

The lattice data on magnetic moments shown in figs. 2–7
have been obtained in the quenched approximation of
QCD, i.e. with the (loop) effects of sea quarks effectively
suppressed. A fully consistent treatment of the chiral ex-
trapolation should therefore be adapted to this situation,
in the sense that the effects of quenching should also be
taken into account appropriately within a chiral effective
field theory. Such a framework has been developed in the
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Fig. 7. Pion mass dependence of the ratio of the anomalous
magnetic moments of proton and neutron. The SU(6) quark
model prediction of −1 is given by the straight horizontal line.
The chiral extrapolation curve based on scheme C is given by
the solid and the Padé fit by the dashed curve. The physical
value κp/κn = −0.94 is denoted by the full circle. The dot-
dashed curve shows the dependence of this ratio on the leading
non-analytic quark mass term only, corresponding to scheme
A discussed in the text.

past decade, called Quenched Chiral Perturbation Theory
(QChPT) [38]. When performing chiral extrapolations of
quenched lattice data, one does not only have to take into
account that the prefactors of pion-mass–dependent terms
could be different in QChPT — even the chiral singular-
ity structure can be different between “Quenched” and
“Full” QCD. Specifically, for the case of the nucleon mag-
netic moments [39] of interest here, this means that there
are terms proportional to const× logmπ which do not ex-
ist in “Full” QCD. The chiral expansion of κv of eq. (4.8)
demonstrates that the leading logarithmic pion-mass de-
pendence is proportional to m2

π × logmπ in “Full” QCD.
The presence of a new chiral singularity like const×logmπ

in “Quenched” QCD indicates that its low-energy proper-
ties —not to speak of its chiral limit— can differ qualita-
tively from what we know in hadron phenomenology.

While “Quenched” QCD is interesting in its own right,
with the comments just made one might arrive at the pes-
simistic conclusion that not much can be learned about
hadron properties in “Full” QCD via extrapolations of
quenched lattice data. However, the loop effects of the sea
quarks —which are missing in “Quenched” QCD— get
strongly suppressed for large quark masses, leading one
to expect that “Quenched” and “Full” QCD do not dif-
fer much in the “heavy-quark regime”. In addition, large
quark masses mean that one is “far away” from chiral sin-
gularities which dominate the chiral-limit behavior of the
quantities of interest. For the time being we can therefore
identify quenched lattice data approximately with “Full”
QCD for effective pion masses above 600 MeV. This as-
sumption is further supported by three observations:

1) Available quenched lattice data on the magnetic mo-
ments of the nucleon for pion masses in the range 0.6
GeV < mπ < 1.5 GeV show a rather moderate curva-
ture (e.g., see fig. 5 in ref. [3]), suggesting a negligible
effect of the extra chiral singularity in this mass region.

2) The difference between the Padé extrapolation curve
eq. (7.1) discussed in sect. 7 and a similar formula that
explicitly includes the leading effects of quenching has
been reported to be small [40]. For pion masses above
600 MeV the two analyses lie within the error bars of
the lattice data.

3) No significant differences between quenched and fully
dynamical simulations for mπ > 600 MeV have been
reported for a variety of nucleon structure properties,
see for example the recent study of moments of nucleon
quark distributions by the LHPC/SESAM collabora-
tion [41].

In essence, while “Quenched” QCD does have a chiral
limit different from “Full” QCD we can accept the given
lattice data points for proton and neutron magnetic mo-
ments at mπ > 600 MeV as if they were “unquenched”,
within their uncertainties. An extrapolation using stan-
dard (rather than quenched) effective chiral field theory
seems therefore justified to provide the correct chiral ex-
trapolation to small quark masses as well as the proper
chiral limit, at least for our present purpose.

9 Conclusion and outlook

The present analysis has pointed out the feasibility of
systematic chiral extrapolations of nucleon magnetic mo-
ments from lattice QCD, down to the range of realistic
light-quark masses where comparisons with the actual ob-
servables can be made. An important element in this dis-
cussion is the treatment of the ∆(1232) isobar as an ex-
plicit degree of freedom in view of its important role in
the magnetic structure of the nucleon. In our approach it
is this feature which produces the important non-analytic
quark mass dependencies of the magnetic moments beyond
the well-known Caldi-Pagels term proportional to mπ.

Our resulting extrapolation is remarkably close to
the Padé approximant parameterization of the Adelaide
group. A sign of caution should be added, however. The
existing (quenched) data terminate around an effective
pion mass of 0.65 GeV, corresponding to u- and d-quark
masses m̂u,d ∼ 200 MeV and larger. Expanding one-loop
chiral effective field theory to such large quark mass scales
has its inherent uncertainties which induce a substantial
error in the extrapolation down to small quark masses.
In fact, it is rather surprising that our NLO extrapola-
tion curve ends up near the physical value for κv, given
that we only use the input from these rather large mass
scales. Certainly the N2LO corrections in schemes A, B
and C (as well as in the relativistic approach discussed in
appendix B) need to be analyzed systematically to judge
the stability of the extrapolation [27]. Future (partially)
unquenched lattice simulations aiming for effective pion
masses around 300 MeV are also expected to reduce the
extrapolation uncertainties significantly. According to our
results deviations from the nearly linear trend seen so far
in the data below 1 GeV pion mass should then become
visible in the lattice data. However, extrapolating the re-
sults of such intermediate mass scale simulations down
to the “physical” pion mass of 138 MeV will presumably
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require precision calculations within (partially) quenched
chiral effective field theories, in order to get control over
the magnitude of the effects of (partial) quenching in the
simulations. Pioneering studies in this direction have al-
ready been performed and look promising [42].

As a final remark we note that future lattice simu-
lations (and the associated chiral extrapolations) of mag-
netic moments and related nucleon properties should pref-
erentially be done in the isovector/isoscalar basis, as the
two channels show quite different patterns of quark mass
dependence.
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Appendix A. Amplitudes

Here we present the results for the 11 leading-one-loop
(i.e. O(ε3)) diagrams shown in fig. 1 which can contribute
to the anomalous magnetic moment of a nucleon of mass
MN . The Lagrangians needed for this calculation are dis-
cussed in sect. 2. We work in the Breit-frame and choose
the velocity vector vµ = (1, 0, 0, 0). With Sµ denoting the
Pauli-Lubanski spin-vector and εµ denoting the polariza-
tion 4-vector of an incoming photon with 4-momentum qµ

one finds

Amp3a =
ie

2MN
ūv [S · ε, S · q] {κ0s + κ0vτ

3

−4MN∆D2 − 4MN∆D1τ
3 − 8MNm

2
πE2

−8MNm
2
πE1τ

3 − 4MN∆
2D4

−4MN∆
2D3τ

3 + O(ε4)
}
uv ,

Amp3b = Amp3c = 0 + O(ε4) ,

Amp3d =
ie

2MN
ūv [S ·ε, S ·q]

{
−g2AMNmπ

4πf2π
+O(ε4)

}
τ3uv,

Amp3e = 0 + O(ε4) ,
Amp3f = Amp3g = 0 + O(ε4) ,

Amp3h = i
c2Ae

f2π

8
3(d− 1)

ūvτ
3 [S · ε, S · q]

×uv ∂

∂m2
π

J2
(−∆,m2

π

)
+ O(ε4)

=
ie

2MN
ūv [S · ε, S · q]

×
{

2c2A∆MN

9π2f2π

(
16π2L+ log

2∆
λ

)

−5c2A∆MN

27f2ππ2
+

2c2A∆MN

9π2f2π

[
log

(mπ

2∆

)

+

√
∆2 −m2

π

∆
logR

]
+ O(ε4)

}
τ3uv ,

Amp3i = 0 + O(ε4) ,
Amp3j = Amp3k =

i
cAgAcV e

f2π∆

8(d− 3)
3(d− 1)

ūvτ
3 [S · ε, S · q]

×uv
{
J2(−∆,m2

π) − J2(0,m2
π)

}
+ O(ε4)

=
ie

2MN
ūv [S · ε, S · q]

{
− 4cAcV gAMN∆

2

27π2f2π

×
[
16π2L+ log

2∆
λ

]
+

2cAcV gAMNm
2
π

9π2f2π

×
[
16π2L+ log

2∆
λ

]
+

2cAcV gAMN∆
2

81π2f2π

+
2cAcV gAMNm

3
π

27π∆f2π
− 4cAcV gAMN∆

2

27π2f2π

×
[ (

1 − m2
π

∆2

)3/2

log(R)

+
(

1 − 3m2
π

2∆2

)
log

(mπ

2∆

) ]}
τ3uv + O(ε4) .

(A.1)

Explicit expressions for the function J2 are given in [17].
We evaluate the amplitudes in d-dimensions with induced
regularization scale λ. Any ultraviolet divergences appear-
ing in the limit d→ 4 are subsumed in

L =
λd−4

16π2

[
1

d− 4
+

1
2

(γE − 1 + ln 4π)
]
, (A.2)

where γE denotes the Euler-Mascharoni constant.
To simplify the calculation we have utilized the elec-

tromagnetic gauge-condition v · ε = 0. Amplitudes e) and
i) are zero due to this choice of gauge, whereas the null re-
sult of amplitudes b), c), f) and g) follows from the Pauli-
Lubanski condition S · v = 0. To this order in the cal-
culation the non-zero results therefore arise solely from
amplitudes a), d), h), j) and k). However, diagrams b),
c), e), f), g) i) will start contributing25 at O(ε4) with a
strength depending on our choice of vµ.

Appendix B. κv to NLO in relativistic baryon
ChPT

Expansion schemes A, B and C discussed in the main
text are non-relativistic approaches based on the “heavy-
baryon” method of [9]. Recently, the relativistic one-
loop analysis of the nucleon magnetic moments presented
in [24] has been updated in ref. [43], employing a new reg-
ularization scheme [44] which overcomes the large renor-
malization effects ∼ Mn typically plaguing relativistic
baryon ChPT in standard dimensional regularization [24].

25 Note that at O(ε4) one also has to take into account tadpole
topologies and wave function renormalization graphs, which
are not displayed in fig. 1.
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At leading-one-loop order (i.e., NLO) in a relativistic chi-
ral effective field theory with pions and nucleons as the
degrees of freedom one obtains [43]

κIRv = c6 − g2AM
2x2

16π2f2π

{
3x2

2
+

2
(
8 − 13x2 + 3x4

)
x
√

4 − x2

× arccos
[
− x

2

]
+ 2

(
7 − 3x2

)
log x

}
+ N2LO ,

(B.1)

with x = mπ/M . This result arises from diagrams a)–e) in
fig. 1, as well as tadpole and wave function renormaliza-
tion. We are interested in this result because relativistic
corrections to the Caldi-Pagels term given in eq. (4.4) can
also generate structures ∼ m3

π, which are claimed to be im-
portant for the fitting of the lattice data (cf. subsect. 5.4).
To discuss this structure we perform the chiral-limit ex-
pansion and obtain

κIRv |NLO ≈ c6 − g2AM

4πf2π
mπ −m2

π

×
[

g2A
4π2f2π

+
7g2A

8π2f2π
log

mπ

M
+ N2LO

]

+m3
π

[
3g2A

8πMf2π
+ N2LO

]
+ . . . , (B.2)

which agrees with ref. [24], where terms up to m2
π logmπ

were discussed. Indeed one also finds a structure ∼ m3
π in

the relativistic approach, as expected. In order to judge
its importance we utilize the parameters of table 2 and fix
the unknown constant c6 to reproduce κv = 3.706 [n.m.]
for mπ → 138 MeV. We obtain the solid curve shown in
fig. 2. Its mπ-dependence is superior to scheme A or B
when compared to the lattice data of ref. [3]. However,
the NLO relativistic result of eq. (B.1) breaks down for
mπ ≈ 600 MeV. Returning to the chiral-limit discussion
we find

κIRv [n.m.]|NLO ≈ 5.068 − 14.05
GeV

mπ

+
m2
π

GeV2

(
−5.814 − 16.67 log

mπ

GeV

)
+ 23.90

m3
π

GeV3

+
m4
π

GeV4

(
6.364 + 8.104 log

mπ

GeV

)
+ . . . . (B.3)

Comparing this result to eq. (5.4) we conclude that
the relativistic-approach–like scheme C contains all al-
lowed quark mass structures, albeit with different (in
general smaller) coefficients. We note that the structures
∼ m2

π, m
3
π have a different sign in the relativistic approach

than in eq. (5.4). At N2LO in relativistic Baryon ChPT
some effects related to ∆(1232) are implicitly incorpo-
rated26 in the higher-order counterterms of the delta-free
theory. It will be interesting to see whether at that order
the relativistic approach can be extended to pion masses
above 600 MeV. A N2LO stability analysis of schemes A,
B, C and of the relativistic approach is in preparation [27].
26 A consistent scheme to introduce ∆(1232) as an explicit
degree of freedom also in the relativistic approach is in prepa-
ration. V. Bernard, private communication.
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